Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Freshw Sci ; 41(2): 167-182, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35846249

RESUMO

Nonperennial streams dominate global river networks and are increasing in occurrence across space and time. When surface flow ceases or the surface water dries, flow or moisture can be retained in the subsurface sediments of the hyporheic zone, supporting aquatic communities and ecosystem processes. However, hydrological and ecological definitions of the hyporheic zone have been developed in perennial rivers and emphasize the mixing of water and organisms, respectively, from both the surface stream and groundwater. The adaptation of such definitions to include both humid and dry unsaturated conditions could promote characterization of how hydrological and biogeochemical variability shape ecological communities within nonperennial hyporheic zones, advancing our understanding of both ecosystem structure and function in these habitats. To conceptualize hyporheic zones for nonperennial streams, we review how water sources and surface and subsurface structure influence hydrological and physicochemical conditions. We consider the extent of this zone and how biogeochemistry and ecology might vary with surface states. We then link these components to the composition of nonperennial stream communities. Next, we examine literature to identify priorities for hydrological and ecological research exploring nonperennial hyporheic zones. Lastly, by integrating hydrology, biogeochemistry, and ecology, we recommend a multidisciplinary conceptualization of the nonperennial hyporheic zone as the porous subsurface streambed sediments that shift between lotic, lentic, humid, and dry conditions in space and time to support aquatic-terrestrial biodiversity. As river drying increases in extent because of global change, we call for holistic, interdisciplinary research across the terrestrial and aquatic sciences to apply this conceptualization to characterize hyporheic zone structure and function across the full spectrum of hydrological states.

2.
Nat Commun ; 13(1): 439, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064140

RESUMO

Humans and ecosystems are deeply connected to, and through, the hydrological cycle. However, impacts of hydrological change on social and ecological systems are infrequently evaluated together at the global scale. Here, we focus on the potential for social and ecological impacts from freshwater stress and storage loss. We find basins with existing freshwater stress are drying (losing storage) disproportionately, exacerbating the challenges facing the water stressed versus non-stressed basins of the world. We map the global gradient in social-ecological vulnerability to freshwater stress and storage loss and identify hotspot basins for prioritization (n = 168). These most-vulnerable basins encompass over 1.5 billion people, 17% of global food crop production, 13% of global gross domestic product, and hundreds of significant wetlands. There are thus substantial social and ecological benefits to reducing vulnerability in hotspot basins, which can be achieved through hydro-diplomacy, social adaptive capacity building, and integrated water resources management practices.

3.
Ground Water ; 60(1): 145-155, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318485

RESUMO

Groundwater pumping can cause streamflow depletion by reducing groundwater discharge to streams and/or inducing surface water infiltration. Analytical and numerical models are two standard methods used to predict streamflow depletion. Numerical models require extensive data and efforts to develop robust estimates, while analytical models are easy to implement with low data and experience requirements but are limited by numerous simplifying assumptions. We have pioneered a novel approach that balances the shortcomings of analytical and numerical models: analytical depletion functions (ADFs), which include empirical functions expanding the applicability of analytical models for real-world settings. In this paper, we outline the workflow of ADFs and synthesize results showing that the accuracy of ADFs compared against a variety of numerical models from simplified, archetypal models to sophisticated, calibrated models in both steady-state and transient conditions over diverse hydrogeological landscapes, stream networks, and spatial scales. Like analytical models, ADFs are rapidly and easily implemented and have low data requirements but have significant advantages of better agreement with numerical models and better representation of complex stream geometries. Relative to numerical models, ADFs have limited ability to explore nonpumping related impacts and incorporate subsurface heterogeneity. In conclusion, ADFs can be used as a stand-alone tool or part of decision-support tools as preliminary screening of potential groundwater pumping impacts when issuing new and existing water licenses while ensuring streamflow meets environmental flow needs.


Assuntos
Água Subterrânea , Rios , Modelos Teóricos , Movimentos da Água , Abastecimento de Água
4.
WIREs Water ; 7(3)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32802326

RESUMO

Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed-scale processes. When stream gages read zero, this may indicate that the stream has fully dried; however, zero-flow readings can also be caused by a wide range of other factors. Our ability to identify whether or not a zero-flow gage reading indicates a dry fluvial system has far reaching environmental implications. Incorrect identification and interpretation by the data user can lead to hydrologic, ecological, and/or biogeochemical predictions from models and analyses. Here, we describe several causes of zero-flow gage readings: frozen surface water, flow reversals, instrument error, and natural or human-driven upstream source losses or bypass flow. For these examples, we discuss the implications of zero-flow interpretations. We also highlight additional methodss for determining flow presence, including direct observations, statistical methods, and hydrologic models, which can be applied to interpret causes of zero-flow gage readings and implications for reach- and watershed-scale dynamics. Such efforts are necessary to improve our ability to understand and predict surface flow activation, cessation, and connectivity across river networks. Developing this integrated understanding of the wide range of possible meanings of zero-flows will only attain greater importance in a more variable and changing hydrologic climate.

5.
Earths Future ; 8(2): e2019EF001377, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32715010

RESUMO

The planetary boundaries framework defines the "safe operating space for humanity" represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross-scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches.

6.
Sci Total Environ ; 693: 133484, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31374507

RESUMO

Eutrophication of freshwaters occurs in watersheds with excessive pollution of phosphorus (P). Factors that affect P cycling and transport, including climate and land use, are changing rapidly and can have legacy effects, making future freshwater quality uncertain. Focusing on the Yahara Watershed (YW) of southern Wisconsin, USA, an intensive agricultural landscape, we explored the relative influence of land use and climate on three indicators of water quality over a span of 57 years (2014-2070). The indicators included watershed-averaged P yield from the land surface, direct drainage P loads to a lake, and average summertime lake P concentration. Using biophysical model simulations of future watershed scenarios, we found that climate exerted a stronger influence than land use on all three indicators, yet land use had an important role in influencing long term outcomes for each. Variations in P yield due to land use exceeded those due to climate in 36 of 57 years, whereas variations in load and lake total P concentration due to climate exceeded those due to land use in 54 of 57 years, and 52 of 57 years, respectively. The effect of land use was thus strongest for P yield off the landscape and attenuated in the stream and lake aquatic systems where the influence of weather variability was greater. Overall these findings underscore the dominant role of climate in driving inter-annual nutrient fluxes within the hydrologic network and suggest a challenge for land use to influence water quality within streams and lakes over timescales less than a decade. Over longer timescales, reducing applications of P throughout the watershed was an effective management strategy under all four climates investigated, even during decades with wetter conditions and more frequent extreme precipitation events.

7.
Ecol Appl ; 28(1): 119-134, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28944518

RESUMO

Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive land-use changes and management may buffer water quality against undesirable future climate changes, but changing climate may overwhelm management efforts to sustain freshwater supply and flood regulation. Spatially, changes in ecosystem services were heterogeneous across the landscape, underscoring the power of local actions and fine-scale management. Our research highlights the value of embracing spatial and temporal perspectives in managing ecosystem services and their complex interactions, and provides a system-level understanding for achieving sustainability of the food-water-climate nexus in agricultural landscapes.


Assuntos
Agricultura , Ecossistema , Desenvolvimento Sustentável , Wisconsin
8.
Remote Sens (Basel) ; 8(7): 597, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30002923

RESUMO

Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to the quantification of agroecosystem processes. In this study, we assessed the universality of the relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and Green Chlorophyll Index (CIGreen). Based on this dataset, we developed global LAI-VI relationships for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. These relationships explain more than half of the total variance in ground LAI observations (R2 >0.5), and provide LAI estimates with RMSE below 1.2 m2/m2. Among the five VIs, EVI/EVI2 are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by TS, are robust when tested by three independent validation datasets of varied spatial scales. While the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships, the relationships provided here represent global universality on an average basis, allowing the generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...